P D - Matrices and Linear Complementarity Problems

نویسنده

  • SABYASACHI PANI
چکیده

Motivated by the definition of P†-matrix ([9]), another generalization of a P -matrix for square singular matrices called PD-matrix is proposed first. Then the uniqueness of solution of Linear Complementarity Problems for square singular matrices is proved using PD-matrices. Finally some results which are true for P -matrices are extended to PD-matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The linear complementarity problem , sufficient matrices and the criss - cross method Report 90 - 49

Specially structured Linear Complementarity Problems (LCP's) and their solution by the criss{ cross method are examined in this paper. The criss{cross method is known to be nite for LCP's with positive semide nite bisymmetric matrices and with P{matrices. It is also a simple nite algorithm for oriented matroid programming problems. Recently Cottle, Pang and Venkateswaran identi ed the class of ...

متن کامل

A New Principal Pivoting Scheme for Box Linear Complementarity Problems**

Judice and Pires developed in recent years principal pivoting methods for the solving of the so-called box linear complementarity problems (BLCPs) where the constraint matrices are restrictedly supposed to be of P–matrices. This paper aims at presenting a new principal pivoting scheme for BLCPs where the constraint matrices are loosely supposed to be row sufficient. This scheme can be applied t...

متن کامل

Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementarity Problems with H−matrices

In this paper we consider some non stationary relaxed synchronous and asynchronous multisplitting methods for solving the linear complementarity problems with their coefficient matrices being H−matrices. The convergence theorems of the methods are given,and the efficiency is shown by numerical tests.

متن کامل

Projective Algorithms for Solving Complementarity Problems

We present robust projective algorithms of the von Neumann type for the linear complementarity problem and for the generalized linear complementarity problem. The methods, an extension of Projections Onto Convex Sets (POCS) are applied to a class of problems consisting of finding the intersection of closed nonconvex sets. We give conditions under which convergence occurs (always in 2 dimensions...

متن کامل

Improved infeasible-interior-point algorithm for linear complementarity problems

We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013